首页> 外文OA文献 >Random matrix theory and robust covariance matrix estimation for financial data
【2h】

Random matrix theory and robust covariance matrix estimation for financial data

机译:随机矩阵理论和鲁棒协方差矩阵估计   财务数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The traditional class of elliptical distributions is extended to allow forasymmetries. A completely robust dispersion matrix estimator (the `spectralestimator') for the new class of `generalized elliptical distributions' ispresented. It is shown that the spectral estimator corresponds to anM-estimator proposed by Tyler (1983) in the context of ellipticaldistributions. Both the generalization of elliptical distributions and thedevelopment of a robust dispersion matrix estimator are motivated by thestylized facts of empirical finance. Random matrix theory is used for analyzingthe linear dependence structure of high-dimensional data. It is shown that theMarcenko-Pastur law fails if the sample covariance matrix is considered as arandom matrix in the context of elliptically distributed and heavy tailed data.But substituting the sample covariance matrix by the spectral estimatorresolves the problem and the Marcenko-Pastur law remains valid.
机译:扩展了椭圆分布的传统类别,以实现不对称。给出了针对新一类“广义椭圆分布”的完全鲁棒的色散矩阵估计器(“ spectralestimator”)。结果表明,频谱估计量对应于Tyler(1983)在椭圆分布情况下提出的M估计量。椭圆分布的一般化和鲁棒色散矩阵估计器的发展都受到经验金融的程式化事实的推动。随机矩阵理论用于分析高维数据的线性相关性结构。结果表明,如果样本协方差矩阵在椭圆分布的数据和重尾数据的背景下被视为随机矩阵,则Marcenko-Pastur律将失败,但是用频谱估计器代替样本协方差矩阵可以解决该问题,并且Marcenko-Pastur律仍然有效。

著录项

  • 作者

    Frahm, Gabriel; Jaekel, Uwe;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号